
CS395T: Continuous Algorithms, Part III
Mirror descent

Kevin Tian

1 Convex duality
This lecture focuses on developing the mirror descent algorithm, which is motivated by generalizing
the gradient descent methods of Part II to problem settings exhibiting non-Euclidean geometries.
These geometries can arise due to the structure of a constraint set of interest, or non-Euclidean
function regularity properties. Specifically, consider a constrained optimization problem

min
x∈X

f(x).

If the natural way to capture regularity of X is by measuring it according to a norm ‖·‖ (e.g.,
X is a ball in ‖·‖), then from the perspective of Banach space theory, it is unnatural to treat
“primal points” x ∈ X the same way as “dual points,” which are linear operators acting on X .
In particular, when f is differentiable, the gradient ∇f(x) is naturally a dual object, and hence
regularity of ∇f(x) should be measured in the dual norm ‖·‖∗. In the Euclidean setting (which was
the setting for most of Part II), this problem is not encountered because `2 norms are self-dual. To
gain some intuition for this treatment of the dual space, recall that Lemma 12, Part I shows that
〈g,x〉 ≤ ‖g‖∗ ‖x‖, so if we have control over ‖x‖ then dual regularity is best measured in ‖·‖∗.

Mirror descent is an algorithm based on treating updates to primal and dual variables asymmet-
rically; the two spaces are linked through a primal-dual mapping. It is crucial to first understand
properties of this mapping, described through the language of convex duality. Specifically, just as
every norm ‖·‖ on Rd has a corresponding dual norm ‖·‖∗, every (closed, proper) convex function
f : Rd → R ∪ {∞} has a corresponding convex conjugate, denoted f∗ and defined below.

Definition 1 (Convex conjugate). Let f : Rd → R∪{∞} be convex, closed, and proper. We denote
the convex conjugate1 of f by f∗, defined as

f∗(y) := sup
x∈Rd

〈y,x〉 − f(x), for all y ∈ Rd.

Our development will use the following basic facts about suprema of convex functions.

Lemma 1. For a set S, let fs : Rd → R ∪ {∞} be a convex function for all s ∈ S. Then
fS(x) := sups∈S fs(x) is convex, and if s? ∈ S attains the supremum, we have ∂fs?(x) ⊆ ∂fS(x).

Proof. To see the first claim, for all s ∈ S, x,x′ ∈ Rd, and λ ∈ [0, 1], we have

fs((1− λ)x + λx′) ≤ (1− λ)fs(x) + λfs(x
′) ≤ (1− λ)fS(x) + λfS(x′).

Supremizing over s on the left-hand side gives the claim. For the second, let g ∈ ∂fs?(x) for some
x ∈ Rd, where s? ∈ argmaxs∈Sfs(y). Then for any x′ ∈ Rd, we have the desired

fS(x) + 〈g,x′ − x〉 = fs?(x) + 〈g,x′ − x〉 ≤ fs?(x′) ≤ fS(x′).

1Sometimes, f∗ is also called the Fenchel dual or Legendre transform of f .

1

As a corollary of Lemma 1, we observe that f∗ is convex, as a supremum over convex (indeed,
linear) functions in its argument y.2 Further, Lemma 1 also characterizes the maximizing argument
of the convex conjugate definition. We also note the converse holds, i.e., if x ∈ ∂f∗(y), we have3

f∗(w) ≥ f∗(y) + 〈x,w − y〉 =⇒ 〈y,x〉 − f∗(y) ≥ 〈w,x〉 − f∗(w) for all w ∈ Rd

=⇒ 〈y,x〉 − f∗(y) ≥ f∗∗(x) = f(x)

=⇒ x ∈ argmaxx∈Rd 〈y,x〉 − f(x), since 〈y,x〉 − f(x) ≥ f∗(y).

We state the following claim from [Roc70], slightly extending these arguments, without proof.

Fact 1 ([Roc70]). If f∗ is the convex conjugate of convex, closed, and proper f : Rd → R∪{∞}, it
is convex, closed, and proper. Moreover, for y ∈ Rd, x ∈ argmaxx∈Rd 〈y,x〉 − f(x) iff x ∈ ∂f∗(y).

The following fact is also immediate from the definition of the convex conjugate.

Fact 2. If f∗ is the convex conjugate of convex, closed, and proper f : Rd → R ∪ {∞},

f∗(y) + f(x) ≥ 〈y,x〉 for all x,y ∈ Rd.

We next prove several additional useful properties of convex conjugates. The first generalizes
Lemma 12, Part II, and shows that the conjugation operation is its own inverse.

Lemma 2. For closed, proper, and convex f : Rd → R ∪ {∞}, f∗∗ = f .

Proof. We first note that f∗∗ ≤ f pointwise, which follows from4

f∗∗(x) := sup
y∈Rd

〈y,x〉 −
(

sup
z∈Rd

〈y, z〉 − f(z)

)
= sup

y∈Rd

inf
z∈Rd

〈y,x− z〉+ f(z)

≤ inf
z∈Rd

sup
y∈Rd

〈y,x− z〉+ f(z) = f(x).

Next, suppose for the sake of contradiction that f∗∗(x) < f(x) for x ∈ Rd, which also means
f∗∗(x) + ε < f(x) for some ε > 0. By the separating hyperplane theorem (Corollary 1, Part I),
there exists (u, c) ∈ Rd×R such that (x, f∗∗(x)+ε) 6∈ epi(f) is separated from all (z, a) ∈ epi(f), i.e.,
for all z ∈ Rd and a ≥ f(z), 〈u, z〉+ ca > 〈u,x〉+ c(f∗∗(x) + ε). By considering (x, f(x)) ∈ epi(f),
it is clear that c > 0, so we may assume c = 1 by scaling u appropriately. Thus, for all z ∈ Rd,

〈u, z〉+ f(z) > 〈u,x〉+ f∗∗(x) + ε ⇐⇒ 〈−u,x〉 − f∗∗(x)− ε > 〈−u, z〉 − f(z).

Supremizing the right-hand side over z shows 〈−u,x〉−f∗∗(x) > f∗(−u), contradicting Fact 2.

As an immediate corollary of Lemma 2 and the last part of Fact 1, we have the following remarkable
duality characterization for conjugate pairs (f, f∗) which are both differentiable.

Corollary 1. Let f : Rd → R be convex, closed, and proper. Then for all x ∈ Rd and y ∈ ∂f(x),
〈y,x〉 = f(x) + f∗(y), and x ∈ ∂f∗(y) if ∂f∗(y) 6= ∅.

Proof. The first claim follows from Fact 1 and Lemma 2. To see the second, if x 6∈ ∂f∗(y), letting
z ∈ ∂f∗(y), we would have f∗(y) = 〈y, z〉 − f(z) > 〈y,x〉 − f(x), a contradiction.

Thus, ∇f and ∇f∗ are inverses when both always exist, and further, these operations act by
mapping points to the maximizing arguments in the definitions of f and f∗. In the constrained
case, we give an example of a statement one can show regarding bijectivity of ∇f and ∇f∗.

Lemma 3 ([Roc70]). Let f : Rd → R ∪ {∞} be convex and of Legendre type (f is differentiable
everywhere in X := int({x ∈ Rd | f(x) <∞}) 6= ∅, and ∇f →∞ as x approaches the boundary of
X). Then ∇f and ∇f∗ are bijections between X and X ∗ := int({y ∈ Rd | f∗(y) <∞}).

2In fact, this shows that the convex conjugate of a nonconvex f is also convex.
3Here we used that the conjugate of the conjugate is the original function, see Lemma 2.
4A mnemonic to remember the inequality sup inf ≤ inf sup is that to maximize your score in a game, it is

preferable to move after your opponent has already committed to a strategy.

2

When f and f∗ are twice-differentiable, differentiating the identity ∇f∗(∇f(x)) = x in x shows(
∇2f∗(∇f(x))

)
∇2f(x) = Id ⇐⇒ ∇2f∗(∇f(x)) =

(
∇2f(x)

)−1
.

This suggests that conjugate pairs have inverse second-order regularity properties. We formal-
ize this in the following, without requiring twice-differentiability of the functions. The proof is
somewhat technical, as it requires handling edge cases due to non-differentiabilty, so we omit it.

Lemma 4 ([KST09]). Let f : Rd → R be convex, closed, and proper. Then if f is L-smooth in
‖·‖, f∗ is 1

L -strongly convex in ‖·‖∗, and if f∗ is 1
L -strongly convex in ‖·‖, f∗ is L-smooth in ‖·‖∗.

One interesting consequence of Lemma 4 is the following fact.

Corollary 2. Let f : Rd → R be convex, closed, proper, and L-smooth in ‖·‖. Then

f(x′)− f(x)− 〈∇f(x),x′ − x〉 ≥ 1

2L
‖∇f(x′)−∇f(x)‖2∗ for all x,x′ ∈ Rd.

Proof. We first observe, by using Corollary 1, that

f(x′)− f(x)− 〈∇f(x),x′ − x〉 = (〈∇f(x′),x′〉 − f∗(∇f∗(x′)))
− (〈∇f(x),x〉 − f∗(∇f(x)))− 〈∇f(x),x′ − x〉
= f∗(∇f(x))− f∗(∇f(x′))− 〈x′,∇f(x)−∇f(x′)〉 .

(1)

The claim follows from strong convexity of f∗, and x′ ∈ ∂f∗(∇f(x′)) (see Remark 2, Part II).

Adding the conclusions of Corollary 2 with x,x′ interchanged, we see that

〈∇f(x′)−∇f(x),x′ − x〉 ≥ 1

L
‖∇f(x′)−∇f(x)‖2∗ , (2)

which is sometimes known as co-coercivity of the gradient.

We conclude the section with a few examples of conjugate pairs often used in algorithm design.

1. Let f(x) = 1
2 ‖x‖

2 for a norm ‖·‖ : Rd → R. Then f∗(y) = 1
2 ‖y‖

2
∗.

2. Let 1
p + 1

q = 1 for p, q ≥ 1. Then if f(x) = 1
p ‖x‖

p
p, f

∗(y) = 1
q ‖y‖

q
q.

3. Let f(x) = ‖x‖ for a norm ‖·‖ : Rd → R. Then f∗(y) = χB‖·‖∗ (1)
(y), the indicator function

of the unit dual norm ball.

4. Let f(x) =
∑
i∈[d] xi(logxi − 1) for x ∈ Rd>0. Then f∗(y) =

∑
i∈[d] exp(yi).

Remark 1. When f is not full-dimensional (i.e., it takes on finite values only on a low-dimensional
subspace), appropriate generalizations of Corollary 1 and Lemma 4 may still hold true, but one
must take more care. For example, when f(x) :=

∑
i∈[d] xi logxi is the entropy function, defined

only on the probability simplex X := {x ∈ Rd>0 | ‖x‖1 = 1} (i.e., f(x) = ∞ for x 6∈ X), its
conjugate is the softmax function f∗(y) := log(

∑
i∈[n] exp(yi)). It is true that ∇f∗(∇f(x)) = x

for any x ∈ X , but ∇f(∇f∗(y)) is only equal to y up to an additive shift by a multiple of 1d.

For the remainder of the lecture, to avoid repetitiveness, we will always assume that convex func-
tions in question are closed and proper, which does not pose an issue in applications.

2 Proximal point methods
In this section, we introduce a conceptual framework which will motivate mirror descent. Through-
out, let f : X → R and ϕ : X → R both be convex. We design an implicit method for minimizing
f , subject to certain relative regularity conditions between f and ϕ, described below. We think of
ϕ as a regularizer function, which guides our algorithm design by capturing the geometry of f .

Definition 2 (Relative conditioning). Let f : X → R and ϕ : X → R both be convex. We say f is
L-relatively smooth with respect to ϕ, or L-relatively smooth in ϕ, if Lϕ− f is convex.5 Similarly,
we say f is µ-relatively strongly convex with respect to (or in) ϕ if f − µϕ is convex.

5In this lecture, we only use relative strong convexity, but mention that much of Part II generalizes to the setting
of relative smoothness, which can be a weaker restriction than smoothness. For more on this, see [BBT17, LFN18].

3

Our relative conditioning definitions recover our definitions in the Euclidean setting from Part II.

Lemma 5. If f : X → R be convex, it is µ-strongly convex iff it is µ-relatively strongly convex in
ϕ := 1

2 ‖·‖
2
2, and it is L-smooth iff it is L-relatively smooth in ϕ.

Proof. The strong convexity equivalence is immediate from Definition 4, Part II, and the equality

1

2
‖(1− λ)x + λx′‖22 =

1− λ
2
‖x‖22 +

λ

2
‖x′‖22 −

λ(1− λ)

2
‖x− x′‖22 . (3)

Indeed, letting fµ := f −µϕ, if f is µ-strongly convex then by definition and (3) fµ is also convex,
and if fµ is convex then adding (3) to the definition of convexity shows that f is µ-strongly convex.
Next, if fL := Lϕ− f is convex, then f is L-smooth because for all x,x′ ∈ Rd,

L

2
‖x′‖22 − f(x′) = fL(x′) ≥ fL(x) + 〈∇fL(x),x′ − x〉

=
L

2
‖x‖22 − f(x) + 〈Lx−∇f(x),x′ − x〉

⇐⇒ f(x′) ≤ f(x) + 〈∇f(x),x′ − x〉+
L

2
‖x′ − x‖22 ,

where we use the equivalent characterization in Lemma 6, Part II. Conversely, if f is L-smooth,
reversing the sequence of claims in the above display shows fL is convex.

The relative conditioning notions in Definition 2 can also be captured in the language of Bregman
divergences, which are a key concept in mirror descent, as a way to measure distances.

Definition 3 (Bregman divergence). Let ϕ : X → R be convex and differentiable. The Bregman
divergence induced by ϕ is defined as6

Dϕ(x‖x̄) := ϕ(x)− ϕ(x̄)− 〈∇ϕ(x̄),x− x̄〉 .

Note that Dϕ(x‖x̄) is the amount that the first-order extrapolation about x̄ underestimates ϕ(x),
so it is always nonnegative. Additionally, for fixed x̄, Dϕ(·‖x̄) differs from ϕ by only a linear term.
We record some basic observations about Dϕ in the following.

Fact 3. Let ϕ : X → R be convex and differentiable. Then Dϕ(x‖x̄) ≥ 0 for all x, x̄ ∈ X , and
D(·‖x̄) is convex for any fixed x̄ ∈ X . In general, Dϕ(x‖·) may not be convex for fixed x ∈ X .

In the language of Definition 3, relative smoothness is equivalent to Df (·‖·) ≤ LDϕ(·‖·) pointwise,
and relative strong convexity is equivalent to µDϕ ≤ Df pointwise. Bregman divergences can
be thought of as a generalized distance, since when ϕ(x) = 1

2 ‖x‖
2
2, Dϕ(x‖x̄) = 1

2 ‖x− x̄‖22. In
general, however, Bregman divergences need not be symmetric in their arguments, as illustrated
by Fact 3. We have already observed another fact about Bregman divergences in (1).

Fact 4. If f and f∗ are both differentiable, Df (x‖x′) = Df∗(∇f(x′)‖∇f(x)).

We now analyze the proximal point method, which iterates updates of the form

xt+1 ← argminx∈X {ηf(x) +Dϕ(x‖xt)} , (4)

for a step size parameter η > 0. Intuitively, each proximal point step trades off the goal of
minimizing f with proximity to the previous iterate, as measured by Dϕ. Of course, as η → ∞
the proximal point method simply sets the first iterate to the minimizer of the function f , which is
as hard as our original goal. In general, we will not view the proximal point method as an actual
algorithm, because oracle access to (4) is frequently difficult to simulate. However, the principles
behind its analysis will be very useful in Section 3 when designing algorithms.

6A mnemonic to remember the order of the arguments is that the function ϕ is convex in its first argument, so
we usually think of Dϕ as a function of it, parameterized by the second argument.

4

Theorem 1 (Proximal point method). Let X ⊆ Rd, and let f : X → R and ϕ : X → R both be
convex and of Legendre type.7 Consider iterating the update (4) for 0 ≤ t < T , from x0 ∈ X with
η > 0, and let x̄ := 1

T

∑
t∈[T] xt. Then letting x? ∈ argminx∈X f(x),

f(x̄)− f(x?) ≤ Dϕ(x?‖x0)

ηT
.

If f is further µ-relatively strongly convex with respect to ϕ for µ > 0,

f(xT)− f(x?) ≤ Dϕ(x?‖xT−1)

η
, and Dϕ(x?‖xt) ≤ (1 + ηµ)

−t
Dϕ(x?‖x0) for all t ∈ [T].

Proof. Because f, ϕ are of Legendre type, it follows that all iterates xt for 0 ≤ t ≤ T , as well as
x?, lie in relint(X), since the existence of Legendre functions over the set implies X is open. We
also observe that the first-order optimality condition on x? shows that

〈∇f(x?),x? − x〉 ≤ 0 for all x ∈ X . (5)

Next, we derive that for all 0 ≤ t < T ,

η(f(xt+1)− f(x?)) ≤ 〈η∇f(xt+1),xt+1 − x?〉
≤ 〈−∇Dϕ(xt+1‖xt),xt+1 − x?〉
= 〈∇ϕ(xt)−∇ϕ(xt+1),xt+1 − x?〉
= Dϕ(x?‖xt)−Dϕ(x?‖xt+1)−Dϕ(xt+1‖xt)
≤ Dϕ(x?‖xt)−Dϕ(x?‖xt+1).

(6)

The second-to-last line applied the following three-point equality, which holds for all x,y, z ∈ X ,
and can be seen by rearranging the definition of the Bregman divergence:

〈∇ϕ(x)−∇ϕ(y),y − z〉 = Dϕ(z‖x)−Dϕ(z‖y)−Dϕ(y‖x). (7)

Summing (6) across all iterations and dividing both sides by ηT , we have the first claim, since

f(x̄)− f(x?) ≤ 1

T

∑
t∈[T]

f(xt)− f(x?) ≤ Dϕ(x?‖x0)

ηT
.

Next, in the relatively strongly convex case, we derive

ηDf (x?‖xt+1) ≤ ηDf (xt+1‖x?) + ηDf (x?‖xt+1)

= η 〈∇f(xt+1)−∇f(x?),xt+1 − x?〉
≤ 〈η∇f(xt+1),xt+1 − x?〉
≤ 〈−∇Dϕ(xt+1‖xt),xt+1 − x?〉 .

The first inequality used nonnegativity of the Bregman divergence, the second used (5), and the
last used the first-order optimality condition on xt+1 in (4). We further have, by (7) and relative
strong convexity combined with the above display, that

ηµDϕ(x?‖xt+1) ≤ Dϕ(x?‖xt)−Dϕ(x?‖xt+1).

Iteratively applying this equation yields the second claim.

Theorem 1 demonstrates that the average iterate of the proximal point method enjoys a 1
T rate

of convergence in suboptimality error for f , where the initial bound is dictated by the size of the
Bregman divergence from x0 to x?. Similarly, it shows that, for strongly convex functions, the
last iterate enjoys a geometric rate of convergence in the Bregman divergence. This motivates
finding ϕ with small additive ranges over sets X of interest, with favorable regularity properties

7It is straightforward to check that another situation where this proof goes through is when f, ϕ are differentiable
on all of Rd, and we consider their restrictions to X , i.e., we are solving a constrained optimization problem.

5

for algorithms. Interestingly, this last iterate vs. average iterate discrepancy frequently appears
in analyses within the mirror descent family. We also observe that letting xt+1 be defined by the
update rule in (4), xt+1 also satisfies

xt+1 = argmaxx∈X {〈−η∇f(xt+1),x〉+ 〈∇ϕ(xt),x〉 − ϕ(x)} ,

so if ϕ∗ is differentiable, Fact 1 shows that

xt+1 = ∇ϕ∗ (∇ϕ(xt)− η∇f(xt+1)) . (8)

We can view ∇ϕ and ∇ϕ∗ as mirror maps linking a primal space and a dual space. Note in
particular that gradient updates are only made to ∇ϕ(xt), rather than to xt itself. We will adopt
this perspective in Section 3, where gradients of f are used to guide a dual variable.

Remark 2. When X = Rd and ϕ = 1
2 ‖·‖

2
2, we can rearrange the optimality condition on xt+1 to

derive that (4) results in the update xt+1 ← xt − η∇f(xt+1). We can view this as a discretization
of the gradient flow (see Part II), where instead of using ∇f(x) ≈ ∇f(xt) for a short time interval
of length η, we use ∇f(x) ≈ ∇f(xt+1), i.e., the approximation is made at the ending point rather
than the starting point. This is known as a “backward Euler discretization” (as opposed to the more
conventional forward Euler), which of course cannot be implemented in closed form in general
as we do not know xt+1 in advance. Conventional numerical analysis wisdom often states that
(implicit implementations of) backward Euler schemes are more stable than forward Euler schemes.
Theorem 1 gives quantitative evidence of this, as it yields a T−1 rate of convergence, as opposed
to the slower T−1/2 rate of the forward Euler discretization in Theorem 2, Part II.

3 Mirror descent
In this section, we develop a discretization of the proximal point method in Section 2, which is
implementable under access to a subgradient oracle for f , and as long as we can solve certain
regularized subproblems in ϕ : X → R. Concretely, we assume that for any g ∈ Rd,

argminx∈X {〈g,x〉+ ϕ(x)} (9)

can be computed in closed form. We remark that this oracle access to ϕ is a special limiting case
of the proximal oracle access in Definition 7, Part II, where v ← −g

λ and λ → 0 (i.e. we take the
quadratic part of the proximal oracle to 0, but keep the linear portion). Moreover, by Fact 3, to
implement (9) we can simply query ∇ϕ∗(−g) when we have a closed form formula for ∇ϕ∗.

The standard mirror descent analysis (Theorem 2) simulates the proximal point update (4) with a
subgradient oracle, in what is best viewed as a forward Euler discretization scheme. If we assume
the optimization objective f is L-Lipschitz, the fact that ‖g‖∗ ≤ L for any subgradient g of f
(Lemma 13, Part II) gives a way to pay for the discretization error of mirror descent by using a
Bregman divergence term we discarded in (6) while proving Theorem 1. Specifically, we use the
following basic fact about strongly convex regularizers, immediate from Lemma 14, Part II.

Fact 5. Let X ⊆ Rd, and let ϕ : X → R be 1-strongly convex in ‖·‖. For any x, x̄ ∈ X ,

Dϕ(x‖x̄) ≥ 1

2
‖x− x̄‖2 .

Theorem 2 (Mirror descent). Let X ⊆ Rd, let f : X → R be convex and L-Lipschitz in ‖·‖, and
let ϕ : X → R be 1-strongly convex in ‖·‖ and of Legendre type.8 Consider iterating the update9

xt+1 ← argminx∈X {〈ηgt,x〉+Dϕ(x‖xt)} , for gt ∈ ∂f(xt), for 0 ≤ t < T, (10)

from x0 ∈ X with η > 0, and let x̄ := 1
T

∑
0≤t<T xt. Then letting x? ∈ argminx∈X f(x),

f(x̄)− f(x?) ≤ Dϕ(x?‖x0)

ηT
+
ηL2

2
.

Letting Θ ≥ Dϕ(x?‖x0) and η ← 1
L ·
√

2ΘT−1/2, the right-hand side above is at most
√

2ΘLT−1/2.
8As with Theorem 1, this proof generalizes to the case where ϕ is differentiable everywhere on Rd.
9We ignore the subtlety of subgradients of f at the boundary of X , because Lipschitzness of f means that the

proof is not meaningfully affected by moving points into relint(X).

6

Proof. We pattern our derivation from the proof of Theorem 1 in (6), up to dropping a nonnegative
Bregman divergence term. Specifically, by rearranging the first-order optimality condition on xt+1,

η(f(xt)− f(x?)) ≤ 〈ηgt,xt − x?〉 = 〈ηgt,xt+1 − x?〉+ 〈ηgt,xt − xt+1〉
≤ 〈−∇Dϕ(xt+1‖xt),xt+1 − x?〉+ 〈ηgt,xt − xt+1〉
= Dϕ(x?‖xt)−Dϕ(x?‖xt+1)−Dϕ(xt+1‖xt) + 〈ηgt,xt − xt+1〉 .

(11)

The first inequality used the definition of the subgradient, and the second inequality used first-order
optimality of xt+1 (recall the last line follows from (7)). Next, we have

−Dϕ(xt+1‖xt) + 〈ηgt,xt − xt+1〉 ≤ −
1

2
‖xt+1 − xt‖2 + 〈ηgt,xt − xt+1〉

≤ −1

2
‖xt+1 − xt‖2 + ‖xt+1 − xt‖ ‖ηgt‖∗

≤ 1

2
‖ηgt‖2∗ ≤

η2L2

2
.

The first inequality used Fact 5, the second used the generalized Hölder’s inequality for dual norms
(Lemma 12, Part II), the third used Young’s inequality, and the last used that Lipschitz functions
have bounded subgradients (Lemma 13, Part II). Finally, combining the above displays shows that

η(f(xt)− f(x?)) ≤ Dϕ(x?‖xt)−Dϕ(x?‖xt+1) +
η2L2

2
for all 0 ≤ t < T,

and the rest of the proof follows as in Theorem 1, by summing, dividing by ηT , and using convexity.

As discussed in Remark 1, Theorem 2 results in a slower convergence rate than its implicit coun-
terpart Theorem 1, due to the discretization error term ηL2

2 . When ϕ is a quadratic, Theorem 2
exactly reduces to the analysis of projected gradient descent in Theorem 2, Part II.

Remark 3. As suggested by the discussion after Theorem 1, mirror descent implements the update

xt+1 ← ∇ϕ∗(∇ϕ(xt)− ηgt), for gt ∈ ∂f(xt),

the forward Euler variant of the update (8). Another variant of mirror descent, sometimes called
“lazy mirror descent” or “dual mirror descent,” explicitly maintains a dual variable st, and iterates

st ← st−1 − ηgt, xt+1 ← ∇ϕ∗(st), for gt ∈ ∂f(xt).

When ∇ϕ∗ and ∇ϕ are inverses, these updates are the same, but in certain settings (such as in
projected gradient descent) they can differ, which can make a difference in applications [DAW12].

In general, Theorem 2 can be modified to obtain faster convergence rates when f is strongly convex
(as suggested by the second part of Theorem 1), but necessarily falls short of a linear convergence
rate in this regime due to the ≈ 1

T -type lower bound in Remark 1, Part II. In the following lecture,
we give an example of a setting, beyond Lipschitzness of the objective, where linear convergence
rates can nonetheless be attained through a mirror descent-type algorithm.

Remark 4 (Online regret minimization). In some cases, mirror descent is motivated in a more
general setting as an online regret minimization algorithm. In particular, suppose we receive a
sequence {gt}0≤t<T ∈ Rd, and we wish to play the following repeated game for turns 0 ≤ t < T .

1. We choose a point xt ∈ X (we think of X as describing a set of actions a player can take).

2. We then observe gt ∈ Rd, and incur loss 〈gt,xt〉.

This game is called “online,” a term used to mean that we do not know the loss vector gt in advance,
and must choose our action xt ∈ X before observing the loss vector. The regret of a player in this
game is defined as (1

T

∑
0≤t<T 〈gt,xt〉) − (infx?∈X

1
T

∑
0≤t<T 〈gt,x?〉). In other words, the regret

compares the average incurred loss by the player to the loss incurred by the best action in hindsight,
had we known all the {gt}0≤t<T (but were forced to repeatedly play the same x?).

7

By repeating the proof of Theorem 2 in (11), short of using the step f(xt)− f(x?) ≤ 〈gt,xt − x?〉,
we see that mirror descent gives a game strategy which incurs regret

1

T

∑
0≤t<T

〈gt,xt〉 −

 inf
x?∈X

1

T

∑
0≤t<T

〈gt,x?〉

 = O

(
L
√

Θ√
T

)
,

provided that for some norm ‖·‖, all ‖gt‖∗ ≤ L, and there is a regularizer ϕ which is 1-strongly
convex in ‖·‖ with Bregman diameter Θ over X from a starting point x0. In the special case where
the {gt}0≤t<T are taken to be subgradients of a convex function, we recover Theorem 2, so online
regret minimization generalizes convex optimization. More generally, online regret minimization is
often used in game theory to model repeated game dynamics with linear losses. Correspondingly,
mirror descent is termed a no-regret algorithm, because when T → ∞ mirror descent gives van-
ishing regret, i.e., a strategy with performance comparable to the best fixed action in hindsight. We
refer the reader to [Sha12] for an expanded discussion of this perspective.

4 Multiplicative weights
We now give a concrete application of mirror descent to a prominent setting which is often useful
in algorithm design; the resulting framework is termed the multiplicative weights update method.
This setting is so widespread that an entire monograph about it can be found in [AHK12]. Let

X :=
{
x ∈ Rd>0 | ‖x‖1 = 1

}
(12)

be the interior of the d-dimensional probability simplex, and define the entropy regularizer

ϕ(x) :=
∑
i∈[d]

xi logxi for x ∈ X . (13)

We specialize our discussion in this section to these particular choices of X , ϕ, and note that as
∇ϕ(x) = logx + 1d and ϕ is differentiable in X , it is indeed of Legendre type since logx diverges
as x→ 0d. We mention that X has a natural interpretation as the set of probability distributions
on [d] placing positive probability on all elements. In light of Theorem 2, the reason for choosing
entropy as our mirror descent regularizer over X is because of the following two facts.

Lemma 6. Defining X , ϕ as in (12), (13), ϕ is 1-strongly convex with respect to ‖·‖1 over X .

Proof. By Lemma 14, Part II, it suffices to prove that ∇2ϕ(x)[v,v] ≥ ‖v‖21 for all v ∈ Rd. To see
this, note that ∇2ϕ(x) = diag

(
x−1

)
where inversion is entrywise, so

∇2ϕ(x)[v,v] =
∑
i∈[d]

v2
i

xi
=

∑
i∈[d]

v2
i

xi

∑
i∈[d]

xi

 ≥
∑
i∈[d]

|vi|

2

= ‖v‖21 .

The second equality used x ∈ X , and the inequality follows due to Cauchy-Schwarz.

Lemma 7. If x0 := 1
d1d is the uniform distribution on [d], Dϕ(x‖x0) < log d for all x ∈ X .

Proof. We first derive a formula forDϕ(x‖x̄) for any x, x̄ ∈ X , where log and division are entrywise:

Dϕ(x‖x̄) = 〈x, logx〉 − 〈x̄, log x̄〉 − 〈x− x̄, log x̄ + 1d〉 =
〈
x, log

x

x̄

〉
=
∑
i∈[d]

xi log
xi
x̄i
. (14)

Here we used that since x, x̄ ∈ 1d, we have 〈x− x̄,1d〉 = 0. In the special case x̄ = x0,

Dϕ(x‖x̄) = 〈x, logx〉+ log(d) 〈x,1d〉 < log(d), since log z < 0 for all z ∈ (0, 1).

Remark 5. The Bregman divergence in the entropic regularizer ϕ, defined in (14), is also known
as the Kullback-Leibler (KL) divergence, and is a fundamental object in information theory. It is
not symmetric, but happens to be jointly convex in its arguments, which is often useful.

8

By combining Lemmas 6 and 7 with Theorem 2, we have an algorithm for optimizing Lipschitz
functions in the `1 norm over the probability simplex. All that is left is implementing the updates
required by the algorithm, which by Fact 3 and the definition in (10), amounts to computing ∇ϕ∗.
In the entropic setting (12), (13), the conjugate ϕ∗ is straightforward to compute in closed form.

Lemma 8. Defining X , ϕ as in (12), (13), we have

ϕ∗(y) := log

∑
i∈[d]

exp (yi)

 for all y ∈ Rd, ∇iϕ∗(y) =
exp(yi)∑
j∈[d] exp(yj)

for all i ∈ [d].

Proof. By considering the Lagrangian formulation of the problem defining ϕ∗, we have

ϕ∗(y) = max
x∈X
〈y,x〉 −

∑
i∈[d]

xi logxi = min
λ∈R

max
x∈R>0

〈y,x〉 −
∑
i∈[d]

xi logxi + λ (1− 〈1d,x〉) ,

where strong duality is by Slater’s condition. The KKT conditions show that the optimal x has

logx = y − α1d ⇐⇒ x = exp(y − α1d),

for some α = 1 + λ ∈ R, where log and exp are applied entrywise. Since x ∈ X , we derive that
α = log(

∑
i∈[d] exp(yi)), and the first conclusion follows by plugging in the optimal choice of x:

ϕ∗(y) = 〈y,x〉 −
∑
i∈[d]

xi (yi − α) = α = log

∑
i∈[d]

exp(yi)

 .

The second conclusion follows by a direct calculation.

In other words, ∇ϕ∗ induces a probability distribution in X proportional to the exponential of
its input. This has a particularly nice interpretation in the setting of “learning from experts,”
which is often how multiplicative weights is motivated. Namely, suppose that there is a panel of d
purported experts, identified with elements of [d], and on each day 0 ≤ t < T we need to choose
a distribution of experts to trust.10 After we choose our action xt ∈ X , the performance of each
expert is revealed through a penalty vector gt ∈ [−L,L]d, and we incur a cost for the day given
by
∑
i∈[d][xt]i[gt]i = 〈xt,gt〉, i.e. the average performance of the experts according to our chosen

distribution. Combining Lemmas 6 and 7 with Remark 4, mirror descent gives a strategy yielding

1

T

∑
0≤t<T

〈gt,xt〉 ≤

min
x?∈X

1

T

∑
0≤t<T

〈gt,x?〉

+
L
√

2 log(d)√
T

=

min
i∈[d]

1

T

∑
0≤t<T

[gt]i

+
L
√

2 log(d)√
T

,

so as long as we follow the prescription of mirror descent, we asymptotically perform as well as
the best expert. In fact, we only need about T ≈ log d observations before mirror descent starts
giving strong guarantees. Interestingly, all penalties can be chosen completely arbitrarily (even
with knowledge of our strategy) and this guarantee still holds. This is a very powerful and perhaps
surprising observation, and we will see an application of it to game theory in the following lecture.

Remark 6. More generally, choosing x0 to minimize ϕ (just as 1
d1d minimizes entropy) in The-

orem 2 makes it simple to bound Θ by the additive range of ϕ, since first-order optimality shows

Dϕ(x?‖x0) = ϕ(x?)− ϕ(x0)− 〈∇ϕ(x0),x? − x0〉 ≤ ϕ(x?)− ϕ(x0).

Now, let us derive the strategy that mirror descent with the entropy regularizer prescribes in this
setting. By writing in closed form the updates (10), in light of Lemma 8, we have that

[xt]i =
exp([st]i)∑
j∈[d] exp([st]j)

, where st = −
∑

0≤τ<t

ηgτ .

10A simple example of this setting is betting markets, or predicting the weather.

9

In other words, entropic mirror descent exponentiates a rescaling of the negated sum of all penalties
seen so far, and tells us to choose an expert i ∈ [d] proportionally to this exponential. We can
think of the update to this prescribed distribution as multiplying a set of weights pointwise by
exp(−ηgt) and renormalizing onto the simplex X , explaining the origin of the name “multiplicative
weights.” In the machine learning literature, this strategy is also known as “Hedge” or “boosting.”

Remark 7. In light of the learning from experts example, we cannot hope for a variant of regret
minimization (Remark 4) where the benchmark x? is allowed to change each day. For example,
suppose there are just two experts, and each day one incurs loss L and one incurs loss −L. If the
benchmark can change daily, it will always choose to take a penalty of −L, and it is straightforward
to see that it is impossible for any player to achieve expected negative loss in the online setting.

We conclude with some brief discussion on the utility of ϕ∗, the conjugate of entropy, in algorithm
design. As mentioned in Remark 1, ϕ∗ in Lemma 8 is often called the softmax function, and can
be interpreted as a smooth approximation of the max function, which takes an input y ∈ Rd to its
largest coordinate value. Indeed, without regularization, maxx∈X 〈y,x〉 exactly implements max
when X is the probability simplex. More generally, we can define the family of softmax functions

smaxη(y) := max
x∈X
〈y,x〉 − ηϕ(x) = η

(
max
x∈X

〈
y

η
,x

〉
− ϕ(x)

)
= η log

∑
i∈[d]

exp

(
1

η
yi

) , (15)

for any η > 0. By using Lemmas 6 and 7 with Lemma 4, we derive some useful consequences.

Corollary 3. Let η > 0. We have for any y ∈ Rd that max(y) ≤ smaxη(y) ≤ max(y) + η log(d)
where max(y) := maxi∈[d] yi, and smaxη is 1

η -smooth in ‖·‖∞.

Oftentimes in robust machine learning (see e.g. [SW16]), minimizing a maximum of loss functions
is a useful primitive,11 but the maximum is not a smooth function. By using smaxη as an approxi-
mation to max, and applying algorithms suited for the `∞ geometry (e.g. our generalized gradient
descent method in Theorem 6, Part II), we can nonetheless obtain efficient algorithms for these
max-type objectives. This strategy was famously pioneered by the influential work [Nes05].

Remark 8. It is sometimes useful to consider variants of the multiplicative weights update strategy
over `p norm balls, where p ∈ (1, 2) (as opposed to p = 1, as in this section). To this end, we
remark that 1

p(p−1) ‖·‖
p
p is 1-strongly convex over B‖·‖p(1), and 1

2(p−1) ‖·‖
2
p is 1-strongly convex over

Rd, both in the `p norm [BCL94]. The former is convenient because it is coordinatewise-separable,
whereas the latter can be preferable due to its global strong convexity property.

5 Stochastic mirror descent
We next explore an advantage of the mirror descent framework, compared to the gradient descent
methods in Part II: its tolerance of randomness. In particular, consider the setting where we wish
to optimize convex f : X → R with a stochastic subgradient estimator, defined as follows.

Definition 4 (Stochastic subgradient estimator). We say g̃ : X → R is a stochastic subgradient
estimator for convex f : X → R if for all x ∈ X , Eg̃(x) ∈ ∂f(x).

In other words, g̃ is a stochastic subgradient estimator if it is an unbiased estimate of a subgradient
of f . To motivate this definition, consider the problem of stochastic convex optimization, a funda-
mental paradigm in machine learning. In this problem, there is a distribution D, each s ∈ supp(D)
induces a convex loss function f(x; s) over X , and we wish to (approximately) compute

x? := argminx∈X f(x), where f(x) := Es∼D [f(x; s)] .

For example, we can model mean estimation, i.e. estimation of Es∼D[s], as an instance of stochastic
convex optimization by defining f(x; s) := 1

2 ‖x− s‖22. It is straightforward to see by first-order
optimality that the minimizer of f(x) := Es∼D

1
2 ‖x− s‖22 is indeed the mean of D. Similarly, in

linear regression we view samples from a distributions as feature-label pairs (a, b) ∈ Rd × R, and
the goal is to minimize f(x) = Es=(a,b)∼Df(x; s) where f(x; s) := 1

2 (〈a,x〉 − b)2. In stochastic

11For example, we may want to ensure our classifier achieves a uniformly-bounded loss over groups of examples.

10

convex optimization, we can design a stochastic subgradient estimator g̃(x) by simply drawing a
fresh sample s ∼ D, and returning ∂f(x; s). Linearity of expectation shows E∂f(x; s) = ∂f(x),
but exact access to subgradients of the population average f is impossible from finite samples.

Another example of a setting where the stochastic subgradient model yields benefits is the related
problem of empirical risk minimization, where we draw a dataset of samples {si}i∈[n] ∼ D, and
directly wish to minimize the empirical risk (as opposed to the population risk), defined by

f(x) :=
1

n

∑
i∈[n]

fi(x), where fi(x) := f(x; si) for all x ∈ X .

It is common in machine learning practice to take multiple passes over the dataset, at which point
there are dependencies between iterates and the dataset, and sample subgradients are no longer
unbiased for the population loss. However, if the minimizer of the empirical risk has sufficiently
good generalization properties, directly aiming to solve for it may still be a meaningful target. In
this setting, we can design a stochastic subgradient estimator for f by returning

g̃(x) := ∂fi(x), for i ∼unif. [n]. (16)

Here, the benefit is computational rather than statistical; returning the subgradient estimator
defined above only requires one subgradient query of the form ∂f(·; s), whereas the standard way
of returning a subgradient of the empirical risk f is to average n subgradients ∂f(·; s). The latter
oracle can be significantly more expensive to implement, requiring a full dataset pass.

To give our algorithm using the access in Definition 4, we make the simple observation that the proof
of Theorem 2 extends readily to the setting where we only have access to a stochastic subgradient
estimator (rather than an exact subgradient oracle), assuming a second moment bound.

Corollary 4 (Stochastic mirror descent). Let X ⊆ Rd, let f : X → R be convex and admit a
stochastic subgradient estimator g̃ : X → Rd, and let ϕ : X → R be 1-strongly convex in ‖·‖ and of
Legendre type. Consider iterating the update

xt+1 ← argminx∈X {〈ηg̃t,x〉+Dϕ(x‖xt)} , for g̃t ← g̃(xt), for 0 ≤ t < T,

from x0 ∈ X with η > 0, and let x̄ := 1
T

∑
0≤t<T xt. Further, suppose that E ‖g̃(x)‖2∗ ≤ L2 for all

x ∈ X . Then letting x? ∈ argminx∈X f(x),

E [f(x̄)− f(x?)] ≤ Dϕ(x?‖x0)

ηT
+
ηL2

2
.

Letting Θ ≥ Dϕ(x?‖x0) and η ← 1
L ·
√

2ΘT−1/2, the right-hand side above is at most
√

2ΘLT−1/2.

Proof. Similarly to the proof of Theorem 2, we have that for all 0 ≤ t < T ,

〈ηg̃t,xt − x?〉 ≤ Dϕ(x?‖xt)−Dϕ(x?‖xt+1) +
η2 ‖g̃t‖2∗

2
.

Taking expectations on both sides, and using independence of g̃ from xt and x? (as x? is a
deterministic point) yields, conditioned on xt, that

〈ηgt,xt − x?〉 = E [〈ηg̃t,xt − x?〉 | xt]

≤ Dϕ(x?‖xt)− E [Dϕ(x?‖xt+1) | xt] +
η2L2

2
, for gt ∈ ∂f(xt).

Here, we used the second moment bound assumption on g̃. At this point, the remainder of the
proof is identical to Theorem 2, where we apply the law of iterated expectations:

E [f(x̄)− f(x?)] ≤ 1

T
E

 ∑
0≤t<T

f(xt)− f(x?)

 ≤ 1

T
E

 ∑
0≤t<T

〈gt,xt − x?〉

 .

11

As we can see from the proof of Corollary 4, one benefit of the mirror descent framework is that
it decouples the effect of the subgradient estimator from the randomness of iterates in a way that
preserves independence. This is in contrast to gradient descent proofs, where convexity is typically
applied between iterates (e.g., Corollary 2, Part II), which are less robust to stochastic estimation.
Indeed, it turns out that the rate of Corollary 4 is optimal even in Euclidean geometries under the
stochastic oracle access stated in the problem; see e.g., [Duc18] for a proof.

6 Variance reduction
In this section, we give an application where empirical risk minimization can be solved much more
efficiently than stochastic convex optimization (i.e. optimization of the population loss), by going
beyond the black-box guarantees of Corollary 4. Consider an empirical risk minimization problem

min
x∈Rd

f(x), where f(x) :=
1

n

∑
i∈[n]

fi(x).

Further, suppose that f is µ-strongly convex, and each fi is individually L-smooth. If we let
Tgrad denote the time it takes to query a gradient oracle of fi for any i ∈ [n], it is clear that
we can implement a gradient oracle for f in time n · Tgrad. Therefore, Theorem 4, Part II (i.e.,
well-conditioned gradient descent) shows that f can be minimized to additive error ε in time

O

((
L

µ
log

(
f(x0)− f(x?)

ε

))
· (n · Tgrad)

)
, (17)

where the former term is the number of iterations and the latter is the cost per iteration. On the
other hand, Corollary 4 with the estimator in (16) yields an incomparable complexity of

O

(
Λ2R2

ε2
· Tgrad

)
,

where Λ2 is a variance bound on (16), and we assume the minimizer x? := argminx∈Rdf(x) is
contained in a known ball of radius R. This begs the question, can we give an algorithm which
inherits both the linear convergence rate of well-conditioned gradient descent, and the improved
dependence of stochastic mirror descent on the dataset size n?

This question was addressed by a sequence of works [SRB17, SZ13, JZ13], which designed variance-
reduced gradient estimators going beyond (16), and gave corresponding custom convergence anal-
yses, specifically for empirical risk minimization problems of the form described above. We give an
overview of this variance reduction technique, primarily borrowing from arguments in [JZ13], be-
cause of the generality of this problem setting and the strong convergence guarantees this strategy
can achieve. The key helper tool we use in this endeavor is the following bound.

Lemma 9. Let x, x̄ ∈ Rd, let f(x) = 1
n

∑
i∈[n] fi(x) where each fi : Rd → R is L-smooth and

convex, and consider the stochastic gradient estimator

g̃(x) := ∇fi(x)−∇fi(x̄) +∇f(x̄), for i ∼unif. [n]. (18)

Then E ‖g̃‖22 ≤ 4L (f(x)− f(x?)) + 4L (f(x̄)− f(x?)).

Proof. Let x? := argminx∈Rdf(x), so that by first-order optimality, ∇f(x?) = 0d. Moreover, note
that for any random vector v ∈ Rd, we have

E ‖v − Ev‖22 = E ‖v‖22 − ‖Ev‖
2
2 ≤ E ‖v‖22 . (19)

We hence derive our desired bound:

E ‖g̃(x)‖22 ≤ 2E ‖∇fi(x)−∇fi(x?)‖22 + 2E ‖∇fi(x̄)−∇f(x̄) +∇fi(x?)−∇f(x?)‖22
≤ 2E ‖∇fi(x)−∇fi(x?)‖22 + 2E ‖∇fi(x̄)−∇fi(x?)‖22
≤ 4LE [fi(x)− fi(x?)− 〈∇fi(x?),x− x?〉] + 4LE [fi(x̄)− fi(x?)− 〈∇fi(x?), x̄− x?〉]
= 4L (f(x)− f(x?)) + 4L (f(x̄)− f(x?)) .

The first inequality used ‖a + b‖22 ≤ 2 ‖a‖22 + 2 ‖b‖22, the second used (19), the third used Corol-
lary 2 twice, and the fourth used linearity of expectation and ∇f(x?) = 0d.

12

Lemma 9 shows that we can relate the variance of the estimator in (18) to the function error at the
current point, plus the function error at an “anchor point” x̄. The stochastic variance reduction
scheme of [JZ13] repeatedly computes ∇f(x̄) for a current anchor point using n gradient queries,
runs stochastic mirror descent using the estimator (18), and then resets x̄. As we will see, the
resulting gradient query complexity dramatically improves, because we only infrequently query
gradients of the full empirical risk, and most iterations only require 2 new sample gradient queries.

Lemma 10. Let x̄ ∈ Rd, and let f(x) = 1
n

∑
i∈[n] fi(x) where each fi : Rd → R is L-smooth and

convex, and f is µ-strongly convex. Consider iterating the update, for g̃ in (18) and η ← 1
6L ,

xt+1 ← xt − ηg̃(xt),

from x0 ← x̄, and let x̄′ := 1
T

∑
0≤t<T xt. Then letting x? := argminx∈Rdf(x), if T ≥ 36L

µ ,

E [f(x̄′)− f(x?)] ≤ 3

4
(f(x̄)− f(x?)) .

Proof. We first note that the update is equivalent to the update in Corollary 4 using the stochastic
gradient oracle in (18), where X = Rd and ϕ = 1

2 ‖·‖
2
2. Therefore, repeating the proof of Corollary 4,

and using the variance bound in Lemma 9, we have for all 0 ≤ t < T that conditioned on xt,

η (f(xt)− f(x?)) ≤ 〈ηEg̃(xt),xt − x?〉

≤ 1

2
‖xt − x?‖22 − E

[
1

2
‖xt+1 − x?‖22

]
+
η2

2
E ‖g̃(xt)‖22

≤ 1

2
‖xt − x?‖22 − E

[
1

2
‖xt+1 − x?‖22

]
+ 2η2L ((f(xt)− f(x?)) + (f(x̄)− f(x?))) .

Rearranging and using our choice of η thus shows that

2η

3
(f(xt)− f(x?)) ≤ 1

2
‖xt − x?‖22 − E

[
1

2
‖xt+1 − x?‖22

]
+
η

3
(f(x̄)− f(x?)) .

Summing the above inequality across all iterations, dividing by 2
3ηT , and applying convexity,

E [f(x̄′)− f(x?)] ≤ 3

4ηT
‖x0 − x?‖22 +

1

2
(f(x̄)− f(x?))

≤
(

3

2ηµT
+

1

2

)
(f(x̄)− f(x?)) ,

where we used strong convexity of f (Lemma 9, Part II). Our choice of T then yields the claim.

In other words, Lemma 10 shows that stochastic variance reduction run for O(Lµ) iterations de-
creases function error by a constant factor. Recursively applying this result then yields a linearly-
convergent algorithm for well-conditioned empirical risk minimization, which dramatically improves
upon the naïve query complexity of gradient descent (17), summarized as follows.

Theorem 3 (Stochastic variance reduction). Let x0 ∈ Rd, let f(x) = 1
n

∑
i∈[n] fi(x) where each

fi : Rd → R is L-smooth and convex, and f is µ-strongly convex. Let κ := L
µ and ε > 0. Consider

the following algorithm, initialized from x̄0 ← x0 and for 0 ≤ k < K.

1. Call the algorithm in Lemma 10 for d36κe iterations, with x̄← x̄k.

2. Set x̄k+1 to the output, and update k ← k + 1.

Then letting x? := argminx∈Rdf(x), if K ≥ log4(f(x0)−f(x?)
ε), we have

E [f(x̄K)− f(x?)] ≤ ε.

In particular, in the notation of (17), note that the cost of implementing a single call to Lemma 10
(for O(κ) iterations) is only O((n + κ) · Tgrad). This should be compared to the cost of naïvely
implementing gradient descent for O(κ) iterations, which is O(nκ · Tgrad).

13

We mention that one benefit of having a linearly-convergent randomized algorithm is that in
expectation guarantees can be boosted to high probability ones with small overhead. For example,
suppose we wanted a variant of Theorem 3 which succeeded with probability 1 − δ, for some
δ ∈ (0, 1). Because f(x)−f(x?) is a nonnegative random variable, if x is a random point satisfying

E [f(x)− f(x?)] ≤ δε,

Markov’s inequality shows that in fact f(x) − f(x?) ≤ ε except with probability δ. The cost of
producing such a random point x using Theorem 3 only loses an additive logarithmic factor (in
the number of calls to Lemma 10) over the cost of achieving expected error ε.

14

Source material
Portions of this lecture are based on reference material in [Roc70, Sha12, Bub15, Sid23], as well as
the author’s own experience working in the field.

References
[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method:

a meta-algorithm and applications. Theory Comput., 8(1):121–164, 2012.

[BBT17] Heinz H. Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond lipschitz
gradient continuity: First-order methods revisited and applications. Math. Oper. Res.,
42(2):330–348, 2017.

[BCL94] Keith Ball, Eric A. Carlen, and Elliott H. Lieb. Sharp uniform convexity and smoothness
estimates for trace norms. Inventiones mathematicae, 115(1):463–482, 1994.

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foundations and
Trends in Machine Learning, 8(3-4):231–357, 2015.

[DAW12] John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual averaging for distributed
optimization: Convergence analysis and network scaling. IEEE Trans. Autom. Control.,
57(3):592–606, 2012.

[Duc18] John C Duchi. Introductory lectures on stochastic optimization. The Mathematics of
Data, pages 99–186, 2018.

[JZ13] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Advances in Neural Information Processing Systems 26: 27th
Annual Conference on Neural Information Processing Systems 2013, pages 315–323,
2013.

[KST09] Sham M. Kakade, Shai Shalev-Shwartz, and Ambuj Tewari. Applications of strong
convexity–strong smoothness duality to learning with matrices. CoRR, abs/0910.0610,
2009.

[LFN18] Haihao Lu, Robert M. Freund, and Yurii E. Nesterov. Relatively smooth convex op-
timization by first-order methods, and applications. SIAM J. Optim., 28(1):333–354,
2018.

[Nes05] Yurii Nesterov. Smooth minimization of non-smooth functions. Math. Program.,
103(1):127–152, 2005.

[Roc70] R. Tyrell Rockafellar. Convex Analysis. Princeton University Press, 1970.

[Sha12] Shai Shalev-Shwartz. Online learning and online convex optimization. Found. Trends
Mach. Learn., 4(2):107–194, 2012.

[Sid23] Aaron Sidford. Optimization Algorithms. 2023.

[SRB17] Mark W. Schmidt, Nicolas Le Roux, and Francis R. Bach. Minimizing finite sums with
the stochastic average gradient. Math. Program., 162(1-2):83–112, 2017.

[SW16] Shai Shalev-Shwartz and Yonatan Wexler. Minimizing the maximal loss: How and why.
In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,
volume 48 of JMLR Workshop and Conference Proceedings, pages 793–801. JMLR.org,
2016.

[SZ13] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for
regularized loss. Journal of Machine Learning Research, 14(1):567–599, 2013.

15

	Convex duality
	Proximal point methods
	Mirror descent
	Multiplicative weights
	Stochastic mirror descent
	Variance reduction

